

LA-UR-17-31406

Approved for public release; distribution is unlimited.

Title: Quantum Computing

Author(s): Pakin, Scott D.

Intended for: Web

Issued: 2017-12-20

Quantum Computing

By Scott Pakin

A bit can be

true or false left or right up or down 1 or 0set or reset on or off high or low It is the mastnoprimitive

unit of informationut

N bits can represent any one of 2^N values

There are **four** possible 1-bit operators

- a
- 1
- T
- ¬а

There are **sixteen** possible 2-bit operators

• _____

a⊻b

a

- a ↓ b
- a ↑ b

a←b

- a← b
- a∧b

aVb

• ¬а

a↔b

• T

a→b

• b

• ¬b

• a→b

You take the blue pill, the story ends; you wake up in your bed and believe whatever you want to believe. You take the red pill, you stay in Wonderland, and I show you how deep the rabbit hole goes.

A qubit is a point in a 2-D Hilbert space

(i.e., a pair of complex numbers)

$$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \end{pmatrix} \begin{pmatrix} i - \frac{3}{2} \\ -\frac{\sqrt{12}i - 1}{2} \end{pmatrix}$$

A qubit's state as a linear combination of basis vectors:

How much "0-ness"
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
How much "1-ness" $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$\alpha, \beta \in \mathbb{C}$$
$$|\alpha|^2 + |\beta|^2 = 1$$

A qubit can simultaneously have properties of both 0 and 1

We call $|\psi\rangle$ a superposition of 0 and 1

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

There are an infinite number of 0s and 1s

Easier to discern from the *Bloch* sphere, a commonly used projective vector space

All $e^{i\phi}|0\rangle$ represent different phases of 0

N qubits can represent all 2^N values simultaneously

 \overline{N} qubits are represented with a vector of length 2^N

Measuring a qubit collapses it to a classical 0 or 1

 $\alpha|0\rangle + \beta|1\rangle$ is measured as 0 with probability $|\alpha|^2$ and 1 with probability $|\beta|^2$

Oracle: I'd ask you to sit down, but, you're not going to anyway. And don't worry about the vase.

Neo: What vase?

[Crash]

Oracle: That vase.

Neo: How did you know?

Oracle: Ohh, what's really going to bake your

noodle later on is, would you still have broken it if

I hadn't said anything?

A 2-qubit state can be constructed from the tensor product of two 1-qubit states

(and similarly for N-qubit states)

$$|10\rangle = |1\rangle \otimes |0\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \cdot 1 \\ 0 \cdot 0 \\ 1 \cdot 1 \\ 1 \cdot 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
 | 00-ness | 10-ness | 11-ness | 11-

Qubits do not necessarily have their own identity

$$\left(\frac{1}{2} \ \frac{1}{2} \ \frac{1}{2} \ \frac{1}{2}\right)^{T}$$
 is read as 00, 01, 10, or 11 with 25% probability apiece

$$\left(0\ \frac{1}{\sqrt{2}}\ \frac{1}{\sqrt{2}}\ 0\right)^T$$
 is read as 01 or 10 with 50% probability apiece

Measuring/modifying one qubit affects the other

We call this entanglement

There are infinitely many 1-qubit operators

• Example #1:
$$NOT = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

• Example #2:
$$\sqrt{NOT} = \frac{1}{2} \begin{pmatrix} 1+i & 1-i \\ 1-i & 1+i \end{pmatrix}$$

Visualizing some 1-qubit operators ("gates")

Hadamard gate (*H*)

- $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ A Hadamard gate puts a qubit in a perfect superposition of 0 and 1
 - XX = YY = ZZ = HH = I
 - Implication: deterministic →
 random → deterministic

There are infinitely many 2-qubit operators (4×4 unitary matrices)

• Example #3:

- Negatesblinesiatoffsbildist againes b
- Usefadnstruentanglongestgates
- What if b is in a superposition?
- What if a is in a superposition?

I know what you're thinking, 'cause right now I'm thinking the same thing. Actually, I've been thinking it ever since I got here: Why, oh why, didn't I take the **blue** pill?

Quantum circuits

What's the big deal?

• First answered by Deutsch and Josza in 1992

- Determine if a given black-box function is constant or balanced
 - For one bit, constant functions are f(x)=0 and f(x)=1; balanced are f(x)=x and $f(x)=\neg x$
 - Classical: Evaluate f(x) twice
 - Quantum: Evaluate f(x) once—returns 0 for balanced, 1 for constant
- Increasing performance improvement with scale
 - Classical: Evaluate f(x) [N/2+1] times for N bits
 - Quantum: Evaluate f(x) once for N bits

Quantum algorithms

- Begin and end classically (i.e., only $|0\rangle$ and $|1\rangle$ states)
- Quantum in between
- Can compute on all 2^N combinations in parallel
- The catch: Only one N-bit answer comes out

Challenges

- Reduce/cancel out probability amplitudes of non-solutions
- Manage rotations
 in an
 N-dimensional
 Hilbert space
- To date, only a small number of algorithms exist

Speedup over classical	#
Exponential	2
Superpolynomial	27
Polynomial	25
Constant	2
Varies	4
Total	60

Stephen Jordan

Quantum Algorithm Zoo

http://math.nist.gov/quantum/zoo

Unordered search

- Which screen's image matches a given pattern?
- Classical: O(N) queries
- Quantum: $O(\sqrt{N})$ queries (next two slides)

Grover's search algorithm

- Given
 - A power-of-2 number of elements
 - A guarantee that exactly one element matches the pattern
 - An operator U_{ω} that, given an element $|x\rangle$, flips the probability amplitude iff the element matches (i.e., $U_{\omega}|x\rangle = -|x\rangle$ for $x = \omega$ and $U_{\omega}|x\rangle = |x\rangle$ for $x \neq \omega$)
- · Return the matching element

Grover's search algorithm

- Approach: For \sqrt{N} iterations, alternately apply U_{ω} followed by "Grover diffusion operator" $U_{\mathcal{S}}$
- $U_s \equiv 2|s\rangle\langle s|-I$, which flips amplitudes around the mean

Integer factorization

- Factor an integer into a product of two primes
- Best known classical algorithm has running time $O(2^{\sqrt[3]{N}})$
- Best known quantum algorithm has running time $O(\log^3 N)$ (next slide)
- Exponential speedup
- Expected that factoring a 50-100 bit number would be intractable classically but tractable with quantum: "quantum advantage"

Shor's algorithm

- It's not too hard to factor N into primes p and q if we know the period of the sequence $\{a^1 \mod N, a^2 \mod N, a^3 \mod N, ...\}$ for some a < N with $p \nmid a$ and $q \nmid a$
- Apply an inverse quantum Fourier

transform to find the period

• All else is $|1\rangle - |1\rangle - |1$

Conclusions

- · Very different form of computing
- Qubits carry more information than classical bits (e.g., phase)
- Quantum gates perform state transformations in high-D spaces
- Exploit superpositioning and entanglement for full parallelism
- Manipulate probability amplitudes to isolate correct answers
- Potential for exponential performance improvement

I'm trying to free your mind, Neo. But I can only show you the door. You're the one that has to walk through it.